
1

Bakshree Mishra

Intel Corporation

September 27, 2019

Edge Acceleration of Computer Vision

and Deep Learning Algorithms

using OpenCL

2

On the Edge : Computer Vision and Machine Learning

Significance in
IOT

• Industrial
automation

• Enable real
time as well as
offline analytics

Problem
Statement

• Conveyor belt
with moving
parts

• Over head
camera doing
online analysis
such as OCR

• Support high
camera frame-
rate

Challenges

• Real-time
processing

• Variable latency
of data transfer
in cloud

Proposed
Solution

• Custom
hardware
accelerator

• FPGA +
OpenCL

3

OpenCL : Quick Overview

• Open Standard for heterogeneous

and cross-platform computing

• Framework maintained by the

Khronos group

• Consists of Host code and Device

code

• Device code is instantiated on the

accelerator/co-processor

Image from https://www.khronos.org/

https://www.khronos.org/

4

Solution for Fast OCR

Fig. 1 Industrial Setup for fast OCR

SENSOR

D
EB

A
YE

R

R
G

B2
G

R
EY

THRESHOLD CCL
CNN on

SLICE

HARDWARE
(FPGA)

SOFTWARE (CPU)

FC
OCR

DECODE

SOFTWARE (CPU)HARDWARE (FPGA)

IMAGE
PRE-PROCESSING

CHARACTER
CANDIDATE REGIONS

CHARACTER
CLASSIFICATION

Fig. 3 Pipeline for OCR Acceleration

• Algorithm:

– Sensor image pre-processing

– Connected Components Labeling

– CNN for OCR

– Character stitching (post-processing)

5

CNN topology and Computation analysis

• Convolutional Neural Networks (CNN) are a class of machine learning algorithms which have recently

performed very well in image classification and are very widely used for machine vision.

• In OCR, the input is an image and the output is a choice among a set of characters that are to be

recognized.

Fig. 2 CNN topology for OCR

• The network topology:

– two convolution and pooling layers

– two fully connected layers

– mask size 3x3 for convolutions.

Layer Nodes Input Size Compute

Convolution Layer 1 16 16x16 36864

Pooling Layer 1 16 16x16 4096

Convolution Layer 2 64 8x8x16 589824

Pooling Layer 2 64 8x8x16 65536

Fully Connected Layer 1 128 4x4x64 131072

Fully Connected Layer 2 256 128 32768

CNN PER LAYER COMPUTE

6

High Level Design | Convolution Kernel

Figure 4 Raster Scan Architecture

• Convolutions take place in raster scan order

• Processing image slices as a 1D data stream

enables bypassing the memory fetch overhead

• In OCR, the input is an image and the output is

a choice among a set of characters that are to

be recognized.

• The nodes are connected in a pipelined fashion

• Each node receives an input pixel and

generates an output pixel every clock cycle.

• Architecture is scalable to the size of the filter

as well as stride,

• Can accelerate both traditional as well as deep

learning based computer vision algorithms.

High Level Design
Layer 1 Compute wrapper

L1 physical nodes

Input Image
Stream

Convolution

Convolution

Convolution

.

.

.

.

Pool

Pool

Pool

.

.

.

.
Weights Buffer

Host to Device
Interface

Layer 1-2 Buffer

L1 Output
FIFO and

L2
Weights

• Modular design that can be

scaled as per network topology

• Nodes pipelined to buffer pre-

fetched data and compute

output every clock cycle

8

High Level Design | Partials Compute

Partials Output
Circular Shift Register

Multiply
Add

Pixel buffer

Weight buffer

Layer n-1 output

Layer n output

Figure 6 High Level Partial Compute Block

•

High Level Architecture and Data flow

Layer 1 Compute wrapper
L1 physical nodes

Input Image
Stream

Convolution

Convolution

Convolution

.

.

.

.

Pool

Pool

Pool

.

.

.

.
Weights Buffer

Host to Device
Interface

Layer 2 Buffer Layer 2 Compute wrapper
L2 physical nodes

Convolution

Convolution

Convolution

.

.

.

.

Pool

Pool

Pool

.

.

.

.

L1 Output
FIFO
and

 L2 Weights

P
A
R
T
I
A
L
S

B
U
F
F
E
R

Add

Add

Add

.

.

.

.

Figure 5 High Level Hardware Architecture for CNN Acceleration

Partials Output
Circular Shift Register

Multiply
Add

Pixel buffer

Weight buffer

Layer n-1 output

Layer n output

10

Experimental Results

Threaded

Operations
CPU (ms) FPGA (ms)

IO Channel (FPGA) - 8.3

CCL+ Threshold 25 -

CNN-Conv (FPGA) 200 8

CNN - FC 15 -

Resource Percentage Used

ALM 88

DSP 76

M10K 44

SENSOR

D
EB

A
YE

R

R
G

B2
G

R
EY

THRESHOLD CCL
CNN on

SLICE

HARDWARE
(FPGA)

SOFTWARE (CPU)

FC
OCR

DECODE

SOFTWARE (CPU)HARDWARE (FPGA)

IMAGE
PRE-PROCESSING

CHARACTER
CANDIDATE REGIONS

CHARACTER
CLASSIFICATION

FPGA Resource Stats:

Algorithm Acceleration per stage:

11

Experimental Results

• The hardware achieves 25x

performance over

convolution layers.

• The software flow could

originally compute OCR at

4 FPS

• CNN accelerator boosts the

end-to-end performance by

7.5X by running at 30FPS.

• Photo on the right is a snap

at early stage of design

12

Take-aways

Complete self-
sufficiency of the

solution

Low cost solution for
compute-on-edge
industrial solution

Maximal usage of
CPU and FPGA at all

times

Reusable architecture
for traditional

Computer Vision
operations as well as

CNNs

Reduced engineering
efforts and faster time

to market by using
OpenCL

RTL level maximal
efficiency and

performance extracted
from OpenCL

implementation

13

Discussion and Further Scope

• Using OpenCL to implement the design helped in making quick iterations and bringing up the

accelerator

• The custom design for CNN was adapted for another traditional CV algorithm use-case with minor

changes

• The scalable design is gated only by FPGA resource constraints

• Current design is only for CNN, other types of networks such as RNNs, LSTMs, GANs need further

work

• Current methodology takes advantage of raster scan order for image processing, may need other

optimizations for other kinds of inputs

14

References
• Abdelouahab, Kamel, et al. "Accelerating CNN inference on FPGAs: A Survey." arXiv preprint

arXiv:1806.01683 (2018).

• Zhao, Wenlai, et al. "F-CNN: An FPGA-based framework for training convolutional neural

networks." 2016 IEEE 27th International Conference on Application-specific Systems, Architectures

and Processors (ASAP). IEEE, 2016.

• D. Wang, K. Xu and D. Jiang, "PipeCNN: An OpenCL-based open-source FPGA accelerator for

convolution neural networks," 2017 International Conference on Field Programmable Technology

(ICFPT), Melbourne, VIC, 2017, pp. 279-282.

• OpenVINO - Open Visual Inference and Neural Network Optimization Toolkit, Intel Corporation,

https://software.intel.com/enus/openvino-toolkit.

• Zhang, Chen, et al. "Optimizing fpga-based accelerator design for deep convolutional neural

networks." Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays. ACM, 2015.

• Meloni, Paolo, et al. "Curbing the roofline: a scalable and flexible architecture for CNNs on FPGA."

Proceedings of the ACM International Conference on Computing Frontiers. ACM, 2016.

• Liu, B.; Zou, D.; Feng, L.; Feng, S.; Fu, P.; Li, J. An FPGA-Based CNN Accelerator Integrating

Depthwise Separable Convolution. Electronics 2019, 8, 281.

