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On the Edge : Computer Vision and Machine Learning 

Significance in 
IOT 

• Industrial 
automation 

• Enable real 
time as well as 
offline analytics 

Problem 
Statement 

• Conveyor belt 
with moving 
parts 

• Over head 
camera doing 
online analysis 
such as OCR 

• Support high 
camera frame-
rate 

Challenges 

• Real-time 
processing 

• Variable latency 
of data transfer 
in cloud 

Proposed 
Solution 

• Custom 
hardware 
accelerator 

• FPGA + 
OpenCL 
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OpenCL : Quick Overview 

• Open Standard for heterogeneous 

and cross-platform computing 

• Framework maintained by the 

Khronos group 

• Consists of Host code and Device 

code 

• Device code is instantiated on the 

accelerator/co-processor 

Image from https://www.khronos.org/ 

https://www.khronos.org/
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Solution for Fast OCR 

Fig. 1 Industrial Setup for fast OCR 
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Fig. 3 Pipeline for OCR Acceleration 

• Algorithm: 

– Sensor image pre-processing 

– Connected Components Labeling 

– CNN for OCR 

– Character stitching (post-processing) 
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CNN topology and Computation analysis 

• Convolutional Neural Networks (CNN) are a class of machine learning algorithms which have recently 

performed very well in image classification and are very widely used for machine vision.  

• In OCR, the input is an image and the output is a choice among a set of characters that are to be 

recognized. 

 

Fig. 2 CNN topology for OCR 

• The network topology: 

– two convolution and pooling layers  

– two fully connected layers 

– mask size 3x3 for convolutions.   

Layer Nodes Input Size Compute 

Convolution Layer 1 16 16x16 36864 

Pooling Layer 1 16 16x16 4096 

Convolution Layer 2 64 8x8x16 589824 

Pooling Layer 2 64 8x8x16 65536 

Fully Connected Layer 1 128 4x4x64 131072 

Fully Connected Layer 2 256 128 32768 

CNN PER LAYER COMPUTE 
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High Level Design | Convolution Kernel 

Figure 4 Raster Scan Architecture 

• Convolutions take place in raster scan order 

• Processing image slices as a 1D data stream 

enables bypassing the memory fetch overhead  

• In OCR, the input is an image and the output is 

a choice among a set of characters that are to 

be recognized. 

• The nodes are connected in a pipelined fashion  

• Each node receives an input pixel and 

generates an output pixel every clock cycle.  

• Architecture is scalable to the size of the filter 

as well as stride,  

• Can accelerate both traditional as well as deep 

learning based computer vision algorithms. 

 



High Level Design 
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• Modular design that can be 

scaled as per network topology 

• Nodes pipelined to buffer pre-

fetched data and compute 

output every clock cycle 

 



8 

High Level Design | Partials Compute 
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Figure 6 High Level Partial Compute Block 

•



High Level Architecture and Data flow 
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Figure 5 High Level Hardware Architecture for CNN Acceleration  
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Experimental Results  

Threaded 

Operations 
CPU (ms) FPGA (ms) 

IO Channel (FPGA) - 8.3 

CCL+ Threshold 25 - 

CNN-Conv (FPGA) 200 8 

CNN - FC 15 - 

Resource Percentage Used 

ALM 88 

DSP 76 

M10K 44 
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FPGA Resource Stats: 

Algorithm Acceleration per stage: 
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Experimental Results  

• The hardware achieves 25x 

performance over 

convolution layers.  

• The software flow could 

originally compute OCR at 

4 FPS 

• CNN accelerator boosts the 

end-to-end performance by 

7.5X by running at 30FPS. 

• Photo on the right is a snap 

at early stage of design 
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Take-aways 

Complete self-
sufficiency of the 

solution 

Low cost solution for 
compute-on-edge 
industrial solution 

Maximal usage of 
CPU and FPGA at all 

times  

Reusable architecture 
for traditional 

Computer Vision 
operations as well as 

CNNs 

Reduced engineering 
efforts and faster time 

to market by using 
OpenCL 

RTL level maximal 
efficiency and 

performance extracted 
from OpenCL 

implementation 
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Discussion and Further Scope 

• Using OpenCL to implement the design helped in making quick iterations and bringing up the 

accelerator 

• The custom design for CNN was adapted for another traditional CV algorithm use-case with minor 

changes 

• The scalable design is gated only by FPGA resource constraints 

• Current design is only for CNN, other types of networks such as RNNs, LSTMs, GANs need further 

work 

• Current methodology takes advantage of raster scan order for image processing, may need other 

optimizations for other kinds of inputs 
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